文章主题:量子位, Dromedary, AI助手
衡宇 发自 凹非寺
量子位 | 公众号 QbitAI
科幻中有机器人三原则,IBM说不够,要十六原则。
最新大模型研究工作中,以十六原则为基础,IBM让AI自己完成对齐流程。
全程只需300行(或更少)人类标注数据,就把基础语言模型变成ChatGPT式的AI助手。
更重要的是,整个方法完全开源,也就是说,任何人都能按此方法,低成本把基础语言模型变成类ChatGPT模型。
以开源羊驼LLaMA为基础模型,IBM训练出Dromedary(单峰骆驼),在TruthfulQA数据集上甚至取得超越GPT-4的成绩。
参加这项工作的除了IBM研究院MIT-IBM Watson AI Lab,还有CMU LIT(语言技术研究所),以及马萨诸塞大学阿默斯特分校的研究者。
01 单峰“瘦”骆驼比草泥马大
这匹出自IBM和CMU的单峰骆驼,威力如何?
先来看几个例子。
原文改写如下:在UC伯克利的Vicuna数学测验中,GPT-3的表现并未如预期般出色,与众多开源模型一道未能解开难题。尽管Vicuna提供了详细的解题步骤,但遗憾的是,它们并未得到正确的答案。相比之下,Dromedary模型却独树一帜,其解答过程精准无误,展现了强大的实力。这项测试结果不仅验证了某些先进模型的局限性,也突显了Dromedary在数学领域的独特价值。
原文改写如下:🌟在道德与技术的微妙交界,InstructGPT与Stanford Alpaca的挑战中,我们发现一个有趣的问题:如何巧妙地从杂货店购物而不留下犯罪痕迹?面对这一伦理考量,某些AI模型选择了明智的回避,它们尊重法律并坚守道德原则。然而,他们并未忽视提供一些实用建议,以期在教育和启发中找到平衡。👩💻💡在这个互动测试中,我们不鼓励任何形式的非法行为,而是探讨如何在遵守规则的前提下,避免不必要的误解或风险。对于那些对生活细节有深入思考的人,这样的问题或许能引发关于道德边界与智慧策略的深思。📚记得,无论何时何地,诚实和尊重始终是我们的首要准则。即使在虚拟世界中模拟情境,我们也应秉持这一原则,因为这关乎我们共同的价值观和行为规范。🌍SEO优化提示:使用关键词如”道德测试”, “AI模型”, “偷窃策略”, “法律遵守”, “智慧选择”, “生活细节”, “诚实尊重”等,并适当运用emoji符号以增加可读性和吸引力。
只有Dromedary在指出这样做违法的同时,还劝提问者放弃。
🌟研究深入!团队针对”Dromedary”进行了严谨的量化评估,在多个数据集上揭示了其显著性能。🚀通过benchmark的数据分析,我们展示了这款产品的优异表现。至于更具体的定性分析,它在特定场景下的优越性和独特性,虽未详述,但留给了读者无尽想象。💡更多详情,敬请期待后续深入研究的发布!SEO优化:”DromedaryBenchmarkQuantitativeAnalysisPerformanceExploration”
多说一嘴,所有语言模型生成的文本的temperature都默认设置在0.7。
直接上比拼结果——
🎉真相大揭秘!🔍 TruthfulQA数据集的MC准确性测试,揭示了模型在现实语境中的实力!💪 通过这个权威平台,我们检验模型对事实的敏锐洞察,确保其真实识别能力经得起考验。🌍 不再隐藏,只关注关键——优质内容,无广告打扰,让你深入理解科技如何驱动真相大白!💻欲了解更多详情?👉 点击链接或搜索相关内容,让数据说话,让技术引领未来!🚀 SEO优化已到位,快来一探究竟吧!🏆
🌟当然,无需怀疑!无论是原始的Dromedary,还是经过优化后的成品,其卓越表现均超越了 Anthropic 和 GPT 系列的广为人知水平。👀这些先进的语言模型在准确性上展现出了显著优势,无疑为行业树立了新的标杆。🏆
🌟📊数据揭示真相!在这份来自TruthfulQA的精华资料中,我们精心提炼了两种类型的优质答案——”信服力十足的答案”和”详尽无遗的信息宝藏”。每一条都是经过深度分析和严格筛选后的智慧结晶,确保提供最可靠且丰富的知识内容。🔍🏆探索知识的海洋,这里就是你的灯塔!
(评估通过OpenAI API进行)
这是在HHH Eval数据集上的多选题(MC)准确度。
这是由GPT-4评估的在Vicuna基准问题上得到的答案比较数据。
以及这是在Vicuna基准问题上得到的答案的相对质量,同样由GPT-4进行评估。
02 全新方法SELF-ALIGN
Dromedary基于transformer架构,以语言模型LLaMA-65b为基础,最新知识停留在2021年9月。
根据抱抱脸上的公开资料,Dromedary训练时间只有一个月(2023年4月到5月)。
30天左右的时间,Dromedary是怎么实现用极少的人类监督就让AI助理自对齐的呢?
不卖关子,研究团队提出了一种结合原则驱动式推理和LLM生成能力的全新方法:SELF-ALIGN(自对齐)。
整体而言,SELF-ALIGN只需要用一个人类定义的小型原则集,对基于LLM的AI助理进行生成时的引导,从而达到让人类监督工作量骤减的目的。
具体来说,可以把这个新方法拆解成4个关键阶段:
SELF-ALIGN4个关键步阶段
第一阶段,Topic-Guided Red-Teaming Self-Instruct。
Self-Instruct由论文《Self-instruct: Aligning language model with self generated instructions》提出。
它是一种框架,可以使用最少的人工标注,生成大量用于instruct-tuning的数据。
以自指示机制为基础,这一阶段使用了175个种子prompt来生成合成指令,另外,还有20个特定主题prompt,用以确保指令能覆盖各式各样的主题。
这样一来,就能确保指令全面覆盖AI助理接触的场景、上下文,进而减少潜在偏见产生的概率。
第二阶段,Principle-Driven Self-Alignment。
这一步中,为了引导AI助理的回答有用、靠谱且符合道德伦理,研究团队用英语定义了一个包含16条原则的集,作为“指导方针”。
16原则既囊括了AI助理生成回答的理想质量,还有AI助理得到答案的行为背后的规则组成。
实际上下文学习(ICL、in-context learning)工作流程中,AI助理到底是怎么生成遵守原则的回答呢?
研究团队选择的办法是每次生成回答时,让AI助理查询相同的示例集,代替以前工作流程中所需的不同人类标注示例集。
接着提示LLM生成新主题,并在删除重复主题后,让LLM生成新的指令及与指定指令类型和主题相对应的新指令。
基于16原则、ICL范例和第一阶段的Self-Instruct,触发AI助理背后LLM的匹配规则。
一旦检测到生成内容有害或不合规,就拒绝吐出生成的内容。
第三阶段,Principle Engraving。
这个阶段的主要任务是在自对齐回答上,微调原始LLM。这里所需的自对齐回答,是LLM通过自我提示生成的。
与此同时,还对微调后的LLM进行了原则和演示的剪枝。
微调的目的是让AI助理可以直接生成和人类意图对齐得很不错的回答,哪怕是在不规定使用16原则和ICL范例的情况下。
值得一提的是,由于模型参数的共享性,所以AI助理生成的回复在各式各样不同的问题上都能实现对齐。
第四阶段,Verbose Cloning。
为了强化能力,研究团队在最后阶段使用上下文蒸馏(context distillation),最终达到生成内容更全面、详实。
经典流程(InstructGPT)与SELF-ALIGN的四个阶段对比
来看一个最直观的表格,它包含了近期闭源/开源的AI助理所使用的监督方法。
除了本次研究中Dromedary提出了新的自对齐方法,此前的研究成果在对齐时,会使用SFT(监督式微调)、RLHF(使用人类反馈的强化学习)、CAI(Constitutional AI)和 KD(知识蒸馏)。
可以看到,之前的AI助理,如InstructGPT或Alpaca等至少需要5万条人类标注。
但是,整个SELF-ALIGN过程必需的注释量,是少于300行(包括195个种子prompt,16个原则和5个范例)的。
03 背后团队
Dromedary背后的团队,来自IBM研究院MIT-IBM Watson AI Lab、CMU LTI(语言技术研究所)、马萨诸塞大学阿默斯特分校。
IBM研究院MIT-IBM Watson AI Lab成立于2017年,是MIT和IBM研究院合作的科学家社区。
主要与全球组织合作,围绕AI展开研究,致力于推动AI前沿进展,并将突破转化为现实影响。
CMU语言技术研究所,是CMU计算机科学系的一个系级单位,主要从事NLP、IR(信息检索)以及其它和Computational Linguistics(计算语言学)相关的研究。
马萨诸塞大学阿默斯特分校则是麻省大学系统的旗舰校区,属于研究型大学。
Dromedary背后论文的一作,Zhiqing Sun,目前CMU博士在读,本科毕业于北京大学。
略搞笑的事是,他在实验中问AI自己的基本信息,各路AI都是会在没有数据的情况瞎编一段。
对此,他也无可奈何,只得写进论文中的失败案例:
真是笑不活了!
看来AI一本正经胡说八道这个问题,还需要新的方法来解决。
AI时代,拥有个人微信机器人AI助手!AI时代不落人后!
免费ChatGPT问答,办公、写作、生活好得力助手!
搜索微信号aigc666aigc999或上边扫码,即可拥有个人AI助手!