文章主题:电影, 音乐, 美食

666AI工具大全,助力做AI时代先行者!

GIDN:一种用于高效链路预测的轻量级图初始扩散网络;使用高阶拉普拉斯算子对单纯复形进行链接分块;公共智慧很重要!社会文本分类的话语感知双曲傅里叶共同意;多层网络上带突变的传播过程;具有预训练语言模型的社交媒体中的时间感知主题识别:电动汽车的案例研究;有向超图中的互惠:度量、发现和生成器;

GIDN:一种用于高效链路预测的轻量级图初始扩散网络

在现代互联网应用中,图神经网络(GNN)已经成为了处理图形数据的有效工具。然而,传统的GNN在处理大规模图形时存在一些问题,例如计算复杂度高、容易出现过拟合等。针对这些问题,本文提出了一种名为GIDN的轻量级图卷积扩散网络,旨在提高链接预测的效率。GIDN采用了图卷积和扩散模块的设计思路,通过引入自监督学习机制,使得模型能够在没有标注数据的情况下进行学习和优化。同时,GIDN还采用了 lightweight 的结构设计,有效降低了模型的计算复杂度,使得其在处理大规模图形问题时具有更好的性能表现。实验结果表明,GIDN在多个链接预测任务上都取得了优于传统GNN的表现,证明了其有效性和优越性。这为处理大规模图形数据提供了一种新的解决方案,同时也为相关领域的研究提供了有益的参考。

地址: http://arxiv.org/abs/2210.01301

作者:Zixiao Wang、Yuluo Guo、Jin Zhao、Yu Zhang、Hui Yu、Xiaofei Liao、Hai Jin、Biao Wang以及Ting Yu。

在本文中,我们提出了一种名为Graph Inception Diffusion Networks(GIDN)的先进模型。该模型的设计初衷是泛化不同特征空间中的图扩散能力,同时利用inception模块来降低复杂网络结构所带来的计算负担。为了验证GIDN模型的有效性,我们在Open Graph Benchmark(OGB)数据集上进行了评估。实验结果显示,GIDN模型在ogbl-collab数据集上的性能超过了传统的AGDN模型,达到了11%的提升。这一结果充分证明了GIDN模型的优越性和实用性,为未来图神经网络的研究提供了新的思路和方向。

使用高阶拉普拉斯算子对单纯复形进行链接分块

在这篇文章中,我们将探讨如何利用高阶拉普拉斯算子在简化链路复杂度上进行链路划分。通过深入研究高阶拉普拉斯算子的性质及其在简化链路分析中的应用,我们将能够更有效地对链路进行划分,从而提高网络性能和效率。

地址: http://arxiv.org/abs/2210.01849

作者: Xinyi Wu, Arnab Sarker, Ali Jadbabaie

在网络科学领域,链接分区是一种广泛应用的方法,旨在通过挖掘强连接链路簇来揭示重叠社区。现有的链接划分技术主要针对表示为图关系的表示方式,这使得它们难以充分利用网络数据中包含的高阶信息。单纯形扩展了图的二元模型,并能够模拟出许多复杂社会和技术系统中普遍存在的多元关系。本文提出了一种新的链接分区方法,该方法借助于单纯形中的高阶(即三元及更高阶)信息,以更有效地进行社区检测。在高阶拉普拉斯算子定义的单纯复形链接上,我们采用了一种创新的随机游走方式,这是对图拉普拉斯算子的推广,同时结合了网络的多面体关系。将此随机游走转化为基于图的随机游走,其中节点与高阶连接形成对偶图,并对模块化标准概念进行了优化。我们在温和的假设下证明了这种方法可以提供可解释的链接分区结果。此外,通过对链接随机游走的谱进行分析,我们也为单纯形的谱特性提供了新的理论成果。在实际应用中,我们的高阶方法在现实世界的社区检测任务中表现出了明显的优势,远胜于现有的基于图的链接分区方法。

公共智慧很重要!社会文本分类的话语感知双曲傅里叶共同意

在当今社会,公共智慧的重要性日益凸显。作为一种文本分类方法,对话式 Hyperbolic Fourier Co-Attention 能够有效地捕捉到文本中的公共信息,从而提升分类的准确性。

地址: http://arxiv.org/abs/2209.13017

作者: Karish Grover, S.M. Phaneendra Angara, Md. Shad Akhtar, Tanmoy Chakraborty

作中,我们提出了一种基于多层网络的传播过程模型,该模型考虑了病原体突变和不同传播接触类型之间的关系通过分析真实世界中的传播数据,我们证明了所提出的模型能有效预

摘要: 社交媒体已成为各种形式的交流的支点。对假新闻、谣言、讽刺等社会文本进行分类已经引起了广泛关注。社交文本本身所表达的表面信号可能不足以完成此类任务;因此,最近的方法试图结合其他内在信号,例如用户行为和底层图结构。通常,通过对社交文本的评论/回复所表达的“公共智慧”充当众包观点的替代品,并可能为我们提供补充信号。最先进的社交文本分类方法往往会忽略如此丰富的层次信号。在这里,我们提出了 Hyphen,一种话语感知的双曲谱共同注意网络。 Hyphen 是双曲图表示学习与新颖的傅立叶共同注意机制的融合,试图通过结合公共话语来概括社交文本分类任务。我们将公共话语解析为抽象意义表示(AMR)图,并使用强大的双曲几何表示来对具有层次结构的图进行建模。最后,我们为其配备了一种新颖的傅立叶共同注意机制,以捕捉源帖子和公共话语之间的相关性。对四种不同社交文本分类任务(即检测假新闻、仇恨言论、谣言和讽刺)的广泛实验表明,Hyphen 具有很好的泛化能力,并在十个基准数据集上取得了最先进的结果。我们还使用句子级别的事实检查和注释数据集来评估 Hyphen 如何能够产生解释作为最终预测的类似证据。

多层网络上带突变的传播过程

原文标题: Spreading Processes with Mutations over Multi-layer Networks

地址: http://arxiv.org/abs/2210.05051

作者: Mansi Sood, Anirudh Sridhar, Rashad Eletreby, Chai Wah Wu, Simon A. Levin, H. Vincent Poor, Osman Yagan

摘要: 新型传染病爆发期间的一个关键科学挑战是预测宿主群体中相互作用模式的变化(由不同的对策引起)如何影响感染的传播。大多数流行病学模型没有考虑病原体突变的作用或感染传播的接触类型的异质性。然而,病原体通常会因环境变化和医疗干预而发生变异。此外,传染病的传播密切取决于东道国人口接触网络的结构特性,例如,学校和办公室等不同的聚集环境会带来不同的传播风险。在这项工作中,我们提出并分析了一个多层多菌株模型,该模型更接近于现实世界的流行病,同时考虑到人类接触网络的典型多层结构和传染病中的突变。我们推导出流行病出现的概率、感染每种菌株的个体的平均比例以及流行病出现的相变点。我们的研究结果强调,现有模型未能完全表征由多层接触网络上的病原体突变引起的流行病爆发。我们证明,应结合其对出现新病原体菌株的可能性的影响来评估针对不同接触网络层(例如,学校停课或在家工作政策)实施/解除缓解措施的影响。我们的工作进一步强调了开发基于网络的流行病学模型的必要性,该模型同时考虑了病原体菌株和网络结构的异质性,以更好地预测疾病爆发的过程。

具有预训练语言模型的社交媒体中的时间感知主题识别:电动汽车的案例研究

原文标题: Time-aware topic identification in social media with pre-trained language models: A case study of electric vehicles

地址: http://arxiv.org/abs/2210.05143

作者: Byeongki Jeong, Janghyeok Yoon, Jaewoong Choi

摘要: 最近竞争激烈的商业环境使公司密切关注社交媒体,因为人们越来越认识到客户语言(例如,需求、兴趣和抱怨)是未来机会的来源。这种分析社交媒体数据的研究途径在学术界受到了广泛关注,但由于大多数方法提供了回顾性结果,因此它们的效用有限。此外,越来越多的客户生成内容和快速变化的主题使得有必要进行时间感知主题演变分析。最近,一些研究人员已经展示了预训练语义语言模型作为输入特征在社交媒体上的适用性,但在理解不断发展的主题方面存在局限性。在这项研究中,我们提出了一种具有预训练语言模型的时间感知主题识别方法。所提出的方法包括两个阶段:以动态为中心的功能,用于使用语言模型跟踪随时间变化的主题,以及用于检查未来有前景的主题的出现评分功能。在这里,我们将建议的方法应用于电动汽车的 reddit 数据,我们的研究结果强调了以时间感知方式从大量社交媒体中刻画新兴客户主题的可行性。

有向超图中的互惠:度量、发现和生成器

原文标题: Reciprocity in Directed Hypergraphs: Measures, Findings, and Generators

地址: http://arxiv.org/abs/2210.05328

作者: Sunwoo Kim, Minyoung Choe, Jaemin Yoo, Kijung Shin

摘要: 群体互动在各个领域都很普遍。其中许多,包括电子邮件交换、化学反应和比特币交易,都是有方向的,因此它们自然地被建模为有向超图,其中每个超弧由一组源节点和一组目标节点组成。对于有向图,这是有向超图的一个特例,互易性作为基本的图统计量在揭示图的组织原则和解决图学习任务中发挥了关键作用。然而,对于一般有向超图,甚至还没有开发出系统的互易性度量。在这项工作中,我们研究了 11 个真实世界超图的互易性。为此,我们首先介绍任何合理的互惠度量都应满足的八个公理。其次,我们提出了 HyperRec,这是一种满足所有公理的超图互易性的原则性度量。第三,我们开发了 Ferret,一种用于计算度量的快速而精确的算法,其搜索空间比朴素计算小 10^147x。第四,使用它们,我们检查了 11 个真实世界的超图,并发现了将它们与随机超图区分开来的模式。最后,我们提出了 ReDi,一种用于展示模式的有向超图的直观生成模型。

声明:Arxiv文章摘要版权论文原作者所有,机器翻译后由本人进行校正整理,未经同意请勿随意转载。本系列在微信公众号“网络科学研究速递”(微信号netsci)和个人博客 https://netsci.complexly.cn (提供RSS订阅)进行同步更新。个性化论文阅读与推荐请访问 https://arxiv.complexly.cn 平台。

作中,我们提出了一种基于多层网络的传播过程模型,该模型考虑了病原体突变和不同传播接触类型之间的关系通过分析真实世界中的传播数据,我们证明了所提出的模型能有效预

AI时代,拥有个人微信机器人AI助手!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

搜索微信号AIGC666aigc999或上边扫码,即可拥有个人AI助手!