摘要
这篇文章由Maximilien Danisch,Ioannis Panagiotas和Lionel Tabourier撰写,主要研究了二部图的压缩问题。他们提出了一种对偶重排序方案,能够使顶点重排序阶段适应二部图的特定结构,从而提高压缩率。此外,他们也建议可以进一步改进这种方法,以使节点排序更适应压缩阶段的后续操作。另外一篇文章是由Yanni Yang,Alex Pentland和Esteban Moro撰写的,关注城市动态和潜在活动行为的研究。他们利用移动数据,研究了美国11个都市区120万到110万个地点的移动访问模式,并发现了12种潜在的活动行为,这些行为可以解释为人们如何在城市中的各种活动组合。他们的研究强调了用活动行为补充传统人口普查数据的重要性。第三篇文章是由Federico Musciotto,Federico Battiston和Rosario N. Mantegna撰写的,他们提出了一种在高阶网络中检测统计验证的单纯形方法。该方法可以检测到任何大小的最大节点集,这些节点始终共同交互,并且不包括仅偶尔出现的共同交互节点。这种方法在高阶网络中非常有效,能够检测到具有显著相似性的节点。最后一篇文章是由Christina Lee Yu,Edoardo M Airoldi,Christian Borgs和Jennifer T Chayes撰写的,他们研究了在未知网络结构的情况下估计随机实验的总治疗效果的问题。他们提出了一种框架,在不了解驱动干扰的网络的情况下估计总治疗效果,并表明,如果有平均历史基线测量值,那么就可以开发一个简单的估计器和有效的随机设计。这个解决方案不依赖于网络结构的深入了解,并为各种模型提供了统计保证。